Full Program

ACDL-2020-Programme-Ver11.0  (ACDL 2020 Programme Ver. 11.0)

Arrival: July 12, 2020

7:30 - 9:00
Breakfast

9:00 - 10:40
Tutorial: Introduction to PyTorch (part 1)
Thomas Viehmann

10:40 - 11:20
Coffee Break

11:20 - 13:00
Tutorial: Introduction to PyTorch (part 2)
Thomas Viehmann

13:00 - 14:00
Lunch

14:00 - 14:50
Lecture 1: Machine Learning for Medicine - a new research frontier
Mihaela van der Schaar

14:50 - 15:40
Lecture 2: Causal Inference and Estimating Individualized Treatment Effects
Mihaela van der Schaar

15:40 - 16:40
Lecture 3: From Black Boxes to White Boxes: Machine Learning Interpretability, Explainability and Trustworthiness
Mihaela van der Schaar

16:40 - 17:20
Coffee Break

17:20 - 18:20
Guided Visit of the Certosa di Pontignano

18:20 - 19:50
Wine Tasting

19:50 - 21:50
Dinner

21:50 -
Oral Presentation Session

7:30 - 9:00
Breakfast

9:00 - 9:50
Lecture: Geometric deep learning: history, successes, promises, and challenges
Michael Bronstein

9:50 - 10:40
Tutorial 1: From grids to graphs
Michael Bronstein

10:40 - 11:20
Coffee Break

11:20 - 12:10
Tutorial 2: Theory and practice
Michael Bronstein

12:10 - 13:00
Tutorial 3: Manifolds, meshes, and point clouds
Michael Bronstein

13:00 - 15:00
Lunch

15:00 - 15:50
Lecture 1: Beyond Backpropagation: Cognitive Architectures for Object Recognition in Video - Requisites for a Cognitive Architecture
José C. Principe

15:50 - 16:40
Lecture 2: Beyond Backpropagation: Cognitive Architectures for Object Recognition in Video - Putting it all together
José C. Principe

16:40 - 17:20
Coffee Break

17:20 - 18:10
Lecture 3: Beyond Backpropagation: Cognitive Architectures for Object Recognition in Video - Modular Learning for Deep Networks
José C. Principe

18:10 - 19:00
Lecture 1: Introduction to the Value of Information Theory
Roman Belavkin

19:00 - 19:50
Lecture 2: Applications of the Value of Information: Graphs, Evolutionary and Learning Algorithms
Roman Belavkin

19:50 - 21:50
Dinner

21:50 -
Lecture 3: Tutorial on Quantum Probability
Roman Belavkin

7:30 - 8:30
Breakfast

8:30 - 13:00
Social Tour: Guided Visit of Siena

13:00 - 15:00
Lunch

15:00 - 15:50
Industrial Talk
Lorenzo De Mattei

15:50 - 16:40
Lecture 1: Bayesian hierarchical models for single-cell 'omics - Foundations and problem description
Guido Sanguinetti

16:40 - 17:20
Coffee Break

17:20 - 16:10
Lecture 1: Autoencoders and Deep Learning
Pierre Baldi

18:10 - 19:00
Lecture 2: Deep Learning in the Physical Sciences
Pierre Baldi

19:00 - 19:50
Lecture 3: Deep Learning in the Life Sciences
Pierre Baldi

19:50 - 21:50
Dinner

21:50 -
Oral Presentation Session

7:30 - 9:00
Breakfast

9:00 - 9:50
Tutorial 1: Learning for Structured Data - An introduction to learning for structured data
Davide Bacciu

9:50 - 10:40
Tutorial 2: Learning for Structured Data - Deep learning for structure processing
Davide Bacciu

10:40 - 11:20
Coffee Break

11:20 - 12:10
Lecture 1: An Introduction to Deep Reinforcement Learning
Igor Babuschkin

12:10 - 13:00
Industrial Talk
Giuseppe Fiameni

13:00 - 15:00
Lunch

15:00 - 15:50
Lecture 2: Hierarchical models for gene epression in single cells
Guido Sanguinetti

15:50 - 16:40
Lecture 3: Single-cell epigenetics and multi-omics
Guido Sanguinetti

16:40 - 17:20
Coffee Break

17:20 - 18:10
Lecture 1: Evolving Neural Networks for POMDP Tasks
Risto Miikkulainen

18:10 - 19:00
Lecture 2: Evolutionary Neural Architecture Search
Risto Miikkulainen

19:00 - 19:50
Lecture 3: Evolutionary Surrogate-Assisted Optimization
Risto Miikkulainen

19:50 - 21:50
Dinner

7:30 - 9:00
Breakfast

9:00 - 9:50
Tutorial 3: Learning for Structured Data - Advanced topics and research challenges
Davide Bacciu

9:50 - 10:40
Lecture 2: Milestones in Large-scale Reinforcement Learning: AlphaZero, OpenAI Five and AlphaStar
Igor Babuschkin

10:40 - 11:20
Coffee Break

11:20
Lecture 3 - Tutorial: JAX, A new library for building neural networks
Igor Babuschkin

13:00 - 15:00
Lunch

15:00 - 15:50
Lecture 1
Sergiy Butenko

15:50 - 16:40
Lecture 2
Sergiy Butenko

16:40 - 17:20
Coffee Break

17:20 - 18:10
Lecture 1: A Constraint-based approach to learning and reasoning
Marco Gori

18:10 - 19:00
Lecture 2
Marco Gori

19:00 - 19:50
Tutorial: Do the dynamics of the city environment influence us and how?
Varun Ojha

19:50 - 21:50
Social Dinner

Departure: July 18, 2020